Combinatorial Analysis (MIT Fall 2021) Instructor: Felix Gotti

Midterm 1 Solutions (by Joey Heerens)

Each question is worth 4 points.

Problem 1 Prove that there exist infinitely many positive integers n such that 2021
divides 99" — 1.

Solution. First, we check that gcd(99,2021) = 1 as neither 3 nor 11 divides 2021.
Now consider the positive integers 99 — 1,992 — 1,...,992922 — 1. As there are 2021
distinct residues modulo 2021, Pigeonhole Principle guarantees the existence of two
distinct integers 7,7 € [2022] such that 99° — 1 and 99 — 1 leave the same remainder
when divided by 2021. Assume without loss of generality that ¢ < j. This gives that
2021 divides 997 — 1 — (99" — 1) = 999 — 99° = 997(99’~* — 1). Since we established
that ged(99,2021) = 1, it is clear that 99~% — 1 is divisible by 2021. However, setting
k = j — i, our argument concludes that k& > 0 and 99* — 1 is divisible by 2021.

There are several ways to show that the statement is true for an infinite number
of positive integers. One such method is to consider integers of the form ck for every
¢ € N. We claim all integers of this form work. However, this is not too hard to see as

99 — 1 = (99% — 1)(99*(~1) 4 99%e=2 ... 4 1)

which is divisible by 2021 since 99* — 1 is divisible by 2021. U

Problem 2 Using a combinatorial argument, prove that

kz:; k(k —1) (Z) — n(n — 1)2"2

for every n € N with n > 2.

Solution. Suppose that there is a class of n students and we wish to select a class
council comprised of a committee of at least 2 people, along with a president and a
vice president who both serve on the committee and are unique people. We can select
a k person committee for any & in (Z) different ways. From this committee, we can
pick the president in k£ different ways and the vice president in k — 1 different ways.
That means that there are (Z)k(k — 1) ways to pick a class council with a committee
of size k. Summing this over all sizes from k& = 2 to n accounts for all possible student
council sizes, but this is equivalent to the left hand side of the equation.

Now consider what happens when the president and vice president are chosen before

we select the committee. Namely, there are n ways to pick a president from a class of
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n students and n — 1 ways to pick a vice president. Both of these students will already
be on the committee. From here, the remaining n — 2 students can either serve on the
committee or not serve on the committee, which means there are 2"~2 ways to select
the rest of the committee. This gives n(n—1)2""2 ways to form the class council which
is precisely the right hand side. Thus, these two sides count the same event and are
subsequently equal.

As a remark, this equality can be shown without a combinatorial argument by
considering %(1 + 2)", evaluated at = 1. It is clear that this is equivalent to n(n —
1)(1+2)"2 = n(n—1)2""2 and the left hand side considers taking the second derivative
for each (Z) 2* term, and summing for all values from k =2 to n at = = 1. O

Problem 3 Prove that the number of compositions of n into odd parts equals the n-th
Fibonacci number (assume that the first two Fibonacci numbers are Fy =1 and Fy = 1).

Solution. For each n € N with n > 2, let T}, be the set of compositions of n into odd
parts, and let ¢,, := |T},|. Observe that the subset A, C T,, consisting of subsets whose
first part is 1 is in direct bijection with the odd compositions T},_;. To see why, note
that having the first part equal to 1 means the rest of the composition must sum to
n — 1 and will be comprised of odd parts. Therefore, |A,| = |T,,_1| = tp_1-

Consider B,, = T,,\ A,, the compositions of n into odd parts that do not start with 1.
This means that the first part is greater than or equal to 3. Subtracting 2 from the first
part gives a composition of n — 2 into odd parts, and further this process is reversible
thus implying that B, is in direct bijection with T,,_5. Therefore |B,| = |T,,_2| = t,_2.

As T,, = A, U B, with A, and B, being disjoint, the relation t, = t, 1 + t,_2
is made. We finish the proof with a strong induction. We claim that ¢, = F,, for
all positive integers n. For the base case, it is evident that t; = 1 and t, = 1, since
Ty = {1} and T, = {1 + 1}. Assume that ¢, = F}, for all positive integers n < k. It is
then given from our work above that t,1 =ty + tx_1 = Fj + Fy_1 from the induction
hypothesis. This means that t;.; = Fj + F_1 = Fj11, thus completing the induction,
therefore we are done. U

Problem 4 Let qi(n) denote the number of partitions of n into k distinct parts. Prove
that g, (n + (g)) = pr(n).

Solution. Let Qr(n) represent the set of partitions of n into k distinct parts and Py(n)
represent the set of partitions of n into £ not necessarily distinct parts. We wish to show
that |Q;.C (n+ (g))‘ = |Py(n)|. Define a function f: Py(n) — Q (n+ (g)) as follows.
Consider an element p € Py(n), and let p represent the partition a; + ag + -+ + ag



Combinatorial Analysis (MIT Fall 2021) Instructor: Felix Gotti

where b; = a; + (¢ — 1) for all i € [k]. Evaluating this sum, it can be seen that

where a; < a;44 for i € [k — 1]. Taking f(p) will produce the partition by + by + - - - + by,

k k k

Zbi:Z(aﬁ—i—l):—k—l—;(ai)%—Zi:n—k—l—@:n—l—<§).

=1 =1 =1

We further claim that all b; are distinct. If this were not the case, then there must
exist some b; = b; for i # j; however, this would imply a; +7 —1 =a; + j — 1 if and
only if a; — a; = ¢ — j. Assume without loss of generality that j > ¢, then the quantity
a; —a; > 0 but i — j < 0, thus implying that these two quantities can not be equal,
showing that all b; are distinct.

Now that it has been shown that f is a valid function, we wish to prove that it
is bijective. To do this, it can be shown that f is both injective and surjective, but
it also suffices to show that f has a valid inverse. The inverse f=! : Q (n + (g)) —
Py(n) is defined by taking a valid partition ¢ € Q (n + (g)) , such that ¢ represents
G+ qa+ -+ qr with ¢; < g;41 for every i € [k — 1], and then making a new partition
p1+p2+ -+ pr where p; = ¢; — (i — 1) for all ¢ € [k]. It can be seen that this will
map to a partition such that p; < p;4q for all i € [k — 1] since ¢;41 > ¢; implies that
pit1 > p;. Further, it is known that

Zipi:iiqi—(i—l)=k+i(fh)—i(i)=k+n+<§) - (’fgl) .

i=1

This means that p; +ps + - - - + py; is a valid partition of n. Thus, this definition of f~1
is well-defined. To see that it is indeed the inverse, consider an element p € Py(n) and
take f~1(f(p)). The partition p; + ps + - -+ + pr gets mapped to p; + (po + 1) + (p3 +
2)+ -+ (pr + k —1) and then f~! maps this to p; + ps + -+ + pr = p. It is evident
that this represents a valid inverse to f, and this proves that f is bijective. Therefore,
we are done. U

Problem 5 Find a closed formula for S(n,3).

Solution. We first present a combinatorial argument. Let 7 be a partition of [n] into 3
blocks. Note that each element of [n] has 3 choices of where it can go, thus giving 3"
options for where we can put those elements. However, all blocks must be nonempty,
meaning that all situations in which there is at least one block without an element
have been falsely included.

Counting these, it can be seen that the number of ways to pick exactly one block
to not have any elements is 3 and then there are 2" — 2 ways to place the elements of
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[n] into the remaining two blocks so that not all of the elements go entirely into one
block or the other. Lastly, there are 3 ways to place all of the elements of [n] into
exactly 1 block. That means we have overcounted 3(2" — 2) + 3 = 3 - 2" — 3 cases.
Subtracting this from our original count gives a total of 3" — 3 - 2" + 3 valid partitions
for w. However, we have to account for the fact that the blocks are indistinguishable,
but the elements in them are not. This means we have overcounted by a factor of 3!
which is the number of ways to permute the blocks. Therefore

1 n n 3n—1 + 1 n—1
S(n,3) = 53" =3-2" +3) =| o —2""|
[
A second solution to this question invokes the formula S(n,k) = S(n — 1,k —

1) + kS(n — 1,k) that was shown in lecture. Further note that it was shown that

S(n,2) = 277! — 1, which can be shown again as there are 2" — 2 ways to place the

items of [n] into one of two boxes so that not all of them items end up in one block,

and we overcount by a factor of 2! which is the number of ways to permute the blocks.
Using this, it can be seen that

S(n,3)=Sn—-1,2)+3-9(n—-1,3)=S(n—-1,2)+3-(S(n—2,2) +3-S(n—2,3)).

Repeating this procedure, it is not hard to see that

n—2

S(n,3) =Y 37" 8(n—1i,2)

i=1

This can be shown inductively. After, substituting the value of S(n — ¢,2) we obtain
that

n—2 n—2 n—2

n—3 n
S(n,3) = Z 3ttt o) = Z gi—1l.gn—i-1__ Z gi-1 _ lz:; i, gn—i=2 _ 3 22— 1.

i=1 i=1 i=1

However, this can be simplified to

n—3 _ 3 n—2 _ _
3n—2 _ 1 (_) -1 3n—2 _ 1 3n—2 _ 1
n—2 T y—1 _ on—2 2 _ n—2 n—1 _
2 ;3 2 — =2 ( : )— S =23 — =
3n—1_+_1 __2n71
2
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A third and final solution counts the problem directly in another fashion. Namely,
if 7 is a partition of [n] into 3 blocks, we have (}) ways to pick the first block’s elements
for any k in [n — 2|. Additionally, there are S(n — k,2) ways to place items into the
other two blocks. Further, this overcounts by a factor of 3 since we have 3 ways to
select which block gets the k elements. This gives the formula

son =3 (Jsosn-SE @er0-3E (o2 0)

=1

Wl

Using the identity > "p_; (}) = (1 + 1)" = 2", we obtain

n—2
—2"+n+2 1 N\ ok
= on
S(n,3) ; + 2‘3; (k)

2" 4n+2 2"+ +1 1\
= - + = 2
6 <= \k

3 6
0

1 1< /n
_ _on—1 - - n—k
= -2 +2+6k§:0 (k>2 .

Note that the new sum counts the number of ways to select three A, B, and C, where
A has k members and the remaining n — k members either go to B or C. However, this
also is equal to 3" as each person has 3 choices for where to go, so this simplifies to

1+3"!

S(n,3) =|—2"""+ 5




